CONTRÔLE CONTINU - MATHÉMATIQUES

Suites numériques

Tous les exercices sont indépendants

Calculatrices autorisées

Il sera tenu compte de la rédaction et de la présentation

Exercice 1

Soit (u_n) la suite définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \sqrt{1 + \frac{3}{n}} - \ln\left(\frac{n+1}{2n-1}\right)$$

- 1. Montrer que la suite (u_n) converge et donner sa limite $\ell \in \mathbb{R}$.
- 2. Déterminer un équivalent de $|u_n \ell|$ en $+\infty$. Ind.: on pourra s'appuyer sur les développements limités ci-dessous.

•
$$(1+h)^{\alpha} = 1+\alpha h + \frac{\alpha(\alpha-1)}{2}h^2 + \ldots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}h^n + o(h^n)$$

•
$$\ln(1+h) = \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} + o(x^n)$$

* * * * * * * * * * *

Exercice 2

Soit

$$(u_n): \begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = \frac{1}{2}u_n + 3 \end{cases} (*)$$

- 1. Donner la fonction φ associée à la relation de récurrence (*) et déterminer son unique point fixe x^* .
- 2. Soit (v_n) la suite définie par

$$\forall n \in \mathbb{N}, \qquad v_n = u_n - x^*$$

(a) Montrer que (v_n) est une suite géométrique dont on précisera la raison et le premier terme.

- (b) En déduire explicitement v_n en fonction de n puis u_n en fonction de n.
- (c) Donner la nature et la limite éventuelle de la suite (u_n) .

* * * * * * * * * * *

Exercice 3

L'objectif de cet exercice est d'étudier les suites numériques définies par

$$(u_n): \begin{cases} u_0 \in [-1,1], \\ u_{n+1} = \frac{2u_n}{1+u_n^2} \end{cases}$$

1. Soit $\varphi: x \longmapsto \frac{2x}{1+x^2}$

- (a) Donner le domaine de définition de φ .
- (b) Dresser le tableau de variation de φ .
- (c) Déterminer les points fixes de φ .
- 2. On suppose ici que $u_0 \in]0,1[$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, on a $u_n \in]0,1[$.
 - (b) Montrer que la suite (u_n) est croissante.
 - (c) En déduire la nature de (u_n) .
 - (d) Déterminer la limite $\lim_{n\to+\infty} u_n$.
- 3. On suppose ici que $u_0 \in]-1,0[$. Montrer que la suite (u_n) est décroissante et converge vers -1.

Ind. : on pourra étudier la suite $(v_n) = (-u_n)$.

4. Bilan

Donner le comportement, la nature et la limite de la suite (u_n) en fonction de $u_0 \in [-1, 1]$. On pourra représenter les différents cas distingués dans un repère (n, u_n) .

* *

CORRECTION

Suites numériques - 2021-2022

Correction Exercice 1 (EXERCICE A)

1. D'après les résultats usuels sur les polynomes en $+\infty$, on a

$$\lim_{n \to +\infty} 1 + \frac{3}{n} = 1 \quad \text{ et } \quad \lim_{n \to +\infty} \frac{n+1}{2n-1} = \frac{1}{2}$$

Donc, les fonctions $\sqrt{}$ et l
n étant continues, respectivement en 1 et en $\frac{1}{2}$, on a

$$\lim_{n \to +\infty} \sqrt{1 + \frac{3}{n}} - \ln\left(\frac{n+1}{2n-1}\right) = 1 - \ln\left(\frac{1}{2}\right) = 1 + \ln(2)$$

Ainsi, la suite (u_n) converge vers

$$\ell = 1 + \ln(2)$$

2. D'après la première formule proposée à l'ordre 2, appliquée pour $h=\frac{3}{n},$ on a

$$\sqrt{1 + \frac{3}{n}} = \left(1 + \frac{3}{n}\right)^{\frac{1}{2}}$$

$$= 1 + \frac{1}{2} \times \frac{3}{n} + \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{2} \times \frac{9}{n^2} + o\left(\frac{1}{n^2}\right)$$

$$= 1 + \frac{3}{2n} - \frac{9}{8n^2} + o\left(\frac{1}{n^2}\right)$$

Par ailleurs, d'après les formules du log, on a

$$\ln\left(\frac{n+1}{2n-1}\right) = \ln(n+1) - \ln(2n-1)$$

$$= \ln\left[n\left(1+\frac{1}{n}\right)\right] - \ln\left[2n\left(1-\frac{1}{2n}\right)\right]$$

$$= \ln(n) + \ln\left(1+\frac{1}{n}\right) - \ln(2) - \ln(n) - \ln\left(1-\frac{1}{2n}\right)$$

$$= \ln\left(\frac{1}{2}\right) + \ln\left(1+\frac{1}{n}\right) - \ln\left(1-\frac{1}{2n}\right)$$

En appliquant alors la seconde formule proposée à l'ordre 2 appliquée pour $h = \frac{1}{n}$, on obtient

$$\ln\left(\frac{n+1}{2n-1}\right) = \ln\left(\frac{1}{2}\right) + \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) - \left(-\frac{1}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right)\right)$$

$$= \ln\left(\frac{1}{2}\right) + \frac{3}{2n} - \frac{3}{8n^2} + o\left(\frac{1}{n^2}\right)$$

D'où

$$u_n = \left[1 + \frac{3}{\sqrt{2n}} - \frac{9}{8n^2} + o\left(\frac{1}{n^2}\right)\right] - \left[\ln\left(\frac{1}{2}\right) + \frac{3}{\sqrt{2n}} - \frac{3}{8n^2} + o\left(\frac{1}{n^2}\right)\right]$$
$$= 1 + \ln(2) - \frac{3}{4n^2} + o\left(\frac{1}{n^2}\right)$$

 et

$$|u_n - \ell| = \left| -\frac{3}{4n^2} + o\left(\frac{1}{n^2}\right) \right| \underset{+\infty}{\sim} \frac{3}{4n^2}$$

* * * * * * * * * * *

Correction Exercice 2 (EXERCICE A)

1. La fonction φ régissant l'évolution de la suite (u_n) est

$$\varphi: x \longmapsto \frac{1}{2}x + 3$$

Son point fixe est l'unique solution de l'équation

$$\varphi(x) = x \iff \frac{1}{2}x + 3 = x \iff x = 6$$

2. La suite (v_n) est définie par

$$\forall n \in \mathbb{N}, \quad v_n = u_n - 6$$

(a) Pour tout $n \in \mathbb{N}$, on a

$$v_{n+1} = u_{n+1} - 6 = \frac{1}{2}u_n + 3 - 6$$
$$= \frac{1}{2}u_n - 3 = \frac{1}{2}(u_n - 6)$$
$$= \frac{1}{2}v_n$$

Ainsi, la suite (v_n) est une suite géométrique, de raison $q = \frac{1}{2}$.

(b) Par définition, $v_0 = u_0 - 6$, donc

$$\forall n \in \mathbb{N}, \qquad v_n = v_0.q^n = (u_0 - 6) \times \left(\frac{1}{2}\right)^n = \frac{u_0 - 6}{2^n}$$

et

$$\forall n \in \mathbb{N}, \qquad u_n = v_n + 6 = \frac{u_0 - 6}{2^n} + 6$$

(c) De la forme explicite ci-dessus, on déduit que (u_n) converge et

$$\lim_{n \to +\infty} u_n = 6$$

* * * * * * * * * *

Correction Exercice 3 (EXERCICE A)

- 1. (a) On a $1+x^2>0$ pour tout $x\in\mathbb{R}$ donc φ est définie sur \mathbb{R} tout entier.
 - (b) La fonction φ est dérivable sur \mathbb{R} et

$$\varphi'(x) = \frac{2 \times (1+x^2) - 2x \times 2x}{(1+x^2)^2} = \frac{2-2x^2}{(1+x^2)^2} = \frac{2(1+x)(1-x)}{(1+x^2)^2}$$

Le dénominateur étant ici strictement positif pour tout $x \in \mathbb{R}$, le signe de $\varphi'(x)$ est donné par le signe du numérateur.

Par ailleurs, on a

$$f(-1) = -1, \quad f(1) = 1, \quad \lim_{x \to \pm \infty} \varphi(x) = 0$$

D'où

x	$-\infty$		-1		1		+∞
1+x		_	0	+		+	
1-x		+		+	0	_	
$\varphi'(x)$		_	0	+	0	_	
$\overline{\varphi}$	0	7	-1	1	1	7	0

(c)

$$\varphi(x) = x \Leftrightarrow \frac{2x}{1+x^2} = x$$

$$\Leftrightarrow 2x = x(1+x^2)$$

$$\Leftrightarrow x^3 - x = 0$$

$$\Leftrightarrow x(x-1)(x+1) = 0$$

$$\Leftrightarrow x = -1 \text{ ou } x = 0 \text{ ou } x = 1$$

La fonction φ admet donc pour points fixes

$$x_1^* = -1 < x_2^* = 0 < x_3^* = 1$$

2. (a) On raisonne ici par récurrence : on pose

$$\mathcal{P}_1(n) : 0 < u_n < 1$$

- Init.: par hypothèse, on a $u_0 \in]0,1[$ donc $\mathcal{P}_1(0)$ est vraie.
- <u>Héréd</u>.: supposons qu'il existe un entier $n \in \mathbb{N}$ tel que $\mathcal{P}_1(n)$ est vraie et montrons qu'alors $\mathcal{P}_1(n+1)$ est vraie.

Par hypothèse de récurrence, on a

$$0 < u_n < 1$$

Or d'après le tableau de variation établi plus haut, la fonction φ est strictement croissante sur l'intervalle [0,1]. Donc

$$\varphi(0) < \varphi(u_n) < \varphi(1) \Rightarrow 0 < u_{n+1} < 1$$

Autrement, $\mathcal{P}_1(n+1)$ est vraie.

- <u>Conclusion</u> : la propriété $\mathcal{P}_1(n)$ est vraie pour n = 0 et héréditaire. Elle est donc vraie pour tout $n \in \mathbb{N}$.
- (b) La suite étant à termes strictement positifs, on peut étudier ici le quotient $\frac{u_{n+1}}{u_n}$. Or pour tout $n \in \mathbb{N}$, on a

$$\frac{u_{n+1}}{u_n} = \frac{1}{\nu_n} \times \frac{2\nu_n}{1 + u_n^2} = \frac{2}{1 + u_n^2} > 1 \text{ car } u_n < 1$$

Donc la suite (u_n) est croissante.

- (c) La suite (u_n) étant croissante et majorée (par 1), elle converge.
- (d) La suite (u_n) étant une suite récurrente autonome et convergente, elle converge vers un point fixe de φ . Étant positive et croissante, elle converge vers le point fixe duquel elle se rapproche, donc $\ell = 1$.
- 3. La suite $(v_n) = (-u_n)$ vérifie d'une part

$$v_0 = -u_0 \in]0,1[$$

et d'autre part

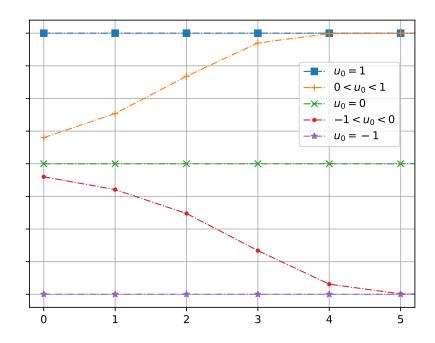
$$\forall n \in \mathbb{N}, \quad v_{n+1} = -u_{n+1} = -\frac{2u_n}{1 + u_n^2} = \frac{2 \times (-u_n)}{1 + (-u_n)^2} = \frac{2v_n}{1 + v_n^2} = \varphi(v_n)$$

Ainsi, la suite $(v_n) = (-u_n)$ fait partie de l'ensemble des suites étudiées à la question 2.

Autrement dit, la suite $(-u_n)$ est croissante et converge vers 1. La suite (u_n) est donc décroissante et tend vers -1.

4. Bilan:

- Si $u_0 = -1$, la suite (u_n) est constante égale à -1.
- Si $-1 < u_0 < 0$, la suite (u_n) décroit vers -1.
- Si $u_0 = 0$, la suite (u_n) est constante égale à 0.
- Si $0 < u_0 < 1$, la suite (u_n) croit vers 1.
- Si $u_0 = 1$, la suite (u_n) est constante égale à 1.



^ ′