TD n°13. Suites Récurrentes II.

Exercice 1 Méthode de Newton

L'unes des premières applications des suites récurrentes concerne l'approximation. Pour trouver une valeur approchée d'un nombre, on cherche à construire une suite récurrente qui s'en approche. La méthode de Newton permet de construire des suites récurrentes convergent vers les solution de certaines équations du type

$$f(x) = 0.$$

Soit donc f une fonction et soit a une solution de l'équation f(x) = 0. (En pratique, on commence bien sur par s'assurer que cette équation admet des solutions).

1. Point de vue géométrique. L'idée de Newton est d'utiliser les tangentes à la courbe C_f pour approcher le point où C_f croise l'axe des abscisses. (Cette méthode ne s'applique donc qu'aux fonctions qui ont des tangentes en tous points, i.e. qui sont dérivables).

Précisement, en partant d'un point d'origine x_0 , il commence par construire la tangente à \mathcal{C}_f au point d'abscisse x_0 . Si elle n'est pas horizontale, elle coupe l'axe des abscisses en un autre point x_1 . Or si la tangente n'a pas trop varié entre le point d'abscisse x_0 et le point d'abscisse a (i.e. si x_0 n'est pas trop loin de a), le point x_1 s'est rapproché de a. En itérant le procédé, on peut donc construire une suite (x_n) qui converge vers a. De plus, cette méthode nous donne une convergence très rapide. (Cela vient du lien fort qu'il existe entre \mathcal{C}_f et ses tangentes).

Soit donc x_0 un point de l'axe des abscisses.

- (a) Retrouver l'équation de la tangente T_0 à C_f au point d'abscisse x_0 .
- (b) En supposant que cette tangente n'est pas horizontale, calculer l'abscisse x_1 du point d'intersection de T_0 avec l'axe des x.
- (c) En déduire la relation de récurrence vérifiée par la suite de Newton.
- 2. Point de vue algébrique. Montrons sur un exemple que l'idée géométrique de Newton était la bonne. Soit a un nombre plus grand que 1 et soit f la fonction définie par

$$f: x \mapsto x^2 - a$$

(a) Quelles sont les solutions de f(x) = 0?

On va construire une suite convergent vers la solution positive.

- (b) Déterminer la relation de récurrence vérifiée par la suite de Newton (x_n) associée à f. Quelle est la fonction g associée ?
- (c) Déterminer un intervalle contenant a sur lequel g est strictement croissante et sur lequel f' ne s'annule pas.
- (d) Déterminer les variations de la suite (x_n) si l'on donne pour point de départ $x_0 = a$. En déduire le comportement de (x_n) quand $n \to +\infty$.
- (e) Donner la forme récurrente complète de la suite de Newton convergent vers \sqrt{a} .
- (f) Retrouver ce résultat sur un dessin (on prendra a=2 et on se placera entre x=1 et x=2).

Exercice 2 L'algorithme d'Euclide étendu

- 1. Rappeler l'algorithme d'Euclide permettant de calculer pgcd(a, b) par divisions euclidiennes successives.
- 2. On notera (r_n) la suite des restes et (q_n) la suite des quotients. Donner les formules de récurrence vérifiées par (q_n) et (r_n) . (Pour des raisons pratiques, on notera $r_0 = b$ et l'on numérotera les quotients à partir de q_1).
- 3. On note maintenant (u_n) et (v_n) les suites récurrentes définies par

$$(u_n)$$
:
$$\begin{cases} u_0 = 0 \\ u_{n+2} = u_n - q_{n+2}u_{n+1} \end{cases}$$
 et (v_n) :
$$\begin{cases} v_0 = 1 \\ v_{n+2} = v_n - q_{n+2}v_{n+1} \end{cases}$$

- (a) Vérifier que $a.u_0 + b.v_0 = r_0$ et $a.u_1 + b.v_1 = r_1$.
- (b) Montrer que pour tout $n \in \mathbb{N}$, on a

$$a.u_n + b.v_n = r_n,$$
 $a.u_{n+1} + b.v_{n+1} = r_{n+1}.$

(c) Que valent u_{n-1} et v_{n-1} quand $r_n = 0$?
